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Abstract — Data sharing is an essential functionality 

in cloud storage. In this paper, we show how to 

efficiently, securely and flexibly share data with 

others in cloud storage. We describe new public-key 

cryptosystems that produce constant-size ciphertexts 

such that efficient delegation of decryption rights for 

any set of ciphertexts is possible. The novelty is that 

one can aggregate any set of secret keys and make 

them as compact as a single key, but encompassing 

the power of all the keys being aggregated. In other 

words, the secret key holder can release a constant-

size aggregate key for flexible choices of ciphertext 

set in cloud storage, but the other encrypted files 

outside the set remain confidential. This compact 

aggregate key can be conveniently sent to others or be 

stored in a smart card with very limited secure storage. 

We provide formal security analysis of our schemes in 

the standard model. We also describe other application 

of our schemes. In particular, our schemes give the 

first public-key patient-controlled encryption for 

flexible hierarchy, which was yet to be known. 

Keywords — Cloud storage, data sharing, key-

aggregate encryption, patient-controlled encryption 

I. INTRODUCTION 

Storing data in a cloud is become a common 

phenomenon recently. In enterprise settings, we see 

the rise in demand for data outsourcing, which assists 

in the strategic management of corporate data. It is 

also used as a core technology behind many online 

services for personal applications. Nowadays, it is 

easy to apply for free accounts for email, photo album, 

and file sharing and/or remote access, with storage 

size more than 25 GB (or a few dollars for more than 

1 TB). Together with the current wireless technology, 

users can access almost all of their files and emails by 

a mobile phone in any corner of the world. 

 

Considering data privacy, a traditional way to ensure it 

is to rely on the server to enforce the access control 

after authentication (e.g., [1]), which means any 

unexpected privilege escalation will expose all data. In 

a shared-tenancy cloud computing environment, 

things become even worse. Data from different clients 

can be hosted on separate virtual machines (VMs) but 

reside on a single physical machine. Data in a target 

VM could be stolen by instantiating another VM co-

resident with the target one [2]. Regarding availability 

of files, there are a series of cryptographic schemes 

which go as far as allowing a third-party auditor to 

check the availability of files on behalf of the data 

owner without leaking anything about the data [3], or 

without compromising the data owners anonymity [4]. 

Likewise, cloud users probably will not hold the 

strong belief that the cloud server is doing a good job 

in terms of confidentiality. A cryptographic solution, 

for example, [5], with proven security relied on 

number-theoretic assumptions is more desirable, 

whenever the user is not perfectly happy with trusting 

the security of the VM or the honesty of the technical 

staff. These users are motivated to encrypt their data 
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with their own keys before uploading them to the 

server. 

 

Data sharing is an important functionality in cloud 

storage. For example, bloggers can let their friends 

view a subset of their private pictures; an enterprise 

may grant her employees access to a portion of 

sensitive data. The challenging problem is how to 

effectively share encrypted data. Of course users can 

download the encrypted data from the storage, decrypt 

them, then send them to others for sharing, but it loses 

the value of cloud storage. Users should be able to 

delegate the access rights of the sharing data to others 

so that they can access these data from the server 

directly. However, finding an efficient and secure way 

to share partial data in cloud storage is not trivial. 

Below we will take Dropbox1 as an example for 

illustration. 

 

Assume that Alice puts all her private photos on 

Dropbox, and she does not want to expose her photos 

to everyone. Due to various data leakage possibility 

Alice cannot feel relieved by just relying on the 

privacy protection mechanisms provided by Dropbox, 

so she encrypts all the photos using her own keys 

before uploading. One day, Alice’s friend, Bob, asks 

her to share the photos taken over all these years 

which Bob appeared in. Alice can then use the share 

function of Dropbox, but the problem now is how to 

delegate the decryption rights for these photos to Bob. 

A possible option Alice can choose is to securely send 

Bob the secret keys involved. Naturally, there are two 

extreme ways for her under the traditional encryption 

paradigm:  

 

 Alice encrypts all files with a single encryption 

key and gives Bob the corresponding secret key 

directly.  

 Alice encrypts files with distinct keys and sends 

Bob the corresponding secret keys.  

 

Obviously, the first method is inadequate since all un-

chosen data may be also leaked to Bob. For the second 

method, there are practical concerns on efficiency. 

The number of such keys is as many as the number of 

the shared photos, say, a thousand. Transferring these 

secret keys inherently requires a secure channel, and 

storing these keys requires rather expensive secure 

storage. The costs and complexities involved generally 

increase with the number of the decryption keys to be 

shared. In short, it is very heavy and costly to do that. 

 

Encryption keys also come with two flavors—

symmetric key or asymmetric (public) key. Using 

symmetric encryption, when Alice wants the data to 

be originated from a third party, she has to give the 

encryptor her secret key; obviously, this is not always 

desirable. By contrast, the encryption key and 

decryption key are different in publickey encryption. 

The use of public-key encryption gives more 

flexibility for our applications. For example, in 

enterprise settings, every employee can upload 

encrypted data on the cloud storage server without the 

knowledge of the company’s master-secret key. 

 

Therefore, the best solution for the above problem is 

that Alice encrypts files with distinct public-keys, but 

only sends Bob a single (constant-size) decryption 

key. Since the decryption key should be sent via a 

secure channel and kept secret, small key size is 

always desirable. For example, we cannot expect large 

storage for decryption keys in the resource-constraint 

devices like smart phones, smart cards, or wireless 

sensor nodes. Especially, these secret keys are usually 

stored in the tamper-proof memory, which is relatively 

expensive. The present research efforts mainly focus 

on minimizing the communication requirements (such 
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as bandwidth, rounds of communication) like 

aggregate signature [6]. However, not much has been 

done about the key itself. 

II. OUR CONTRIBUTION 

In modern cryptography, a fundamental problem we 

often study is about leveraging the secrecy of a small 

piece of knowledge into the ability to perform 

cryptographic functions (e.g., encryption, 

authentication) multiple times. In this paper, we study 

how to make a decryption key more powerful in the 

sense that it allows decryption of multiple ciphertexts, 

without increasing its size. Specifically, our problem 

statement is  

 

“To design an efficient public-key encryption scheme 

which supports flexible delegation in the sense that 

any subset of the ciphertexts (produced by the 

encryption scheme) is decryptable by a constant-size 

decryption key (generated by the owner of the master-

secret key).” 

 

We solve this problem by introducing a special type of 

public-key encryption which we call key-aggregate 

cryptosystem (KAC). In KAC, users encrypt a 

message not only under a public-key, but also under 

an identifier of ciphertext called class. That means the 

ciphertexts are further categorized into different 

classes. The key owner holds a master-secret called 

master-secret key, which can be used to extract secret 

keys for different classes. More importantly, the 

extracted key have can be an aggregate key which is 

as compact as a secret key for a single class, but 

aggregates the power of many such keys, i.e., the 

decryption power for any subset of ciphertext classes. 

 

 

Figure 1 Alice share files with identifiers 2, 3, 6 and 8 

with Bob by sending him a single aggregate key. 

 

With our solution, Alice can simply send Bob a single 

aggregate key via a secure e-mail. Bob can download 

the encrypted photos from Alice’s Dropbox space and 

then use this aggregate key to decrypt these encrypted 

photos. The scenario is depicted in Fig. 1. 

 

The sizes of ciphertext, public-key, master-secret key, 

and aggregate key in our KAC schemes are all of 

constant size. The public system parameter has size 

linear in the number of ciphertext classes, but only a 

small part of it is needed each time and it can be 

fetched on demand from large (but non-confidential) 

cloud storage.  

 

Previous results may achieve a similar property 

featuring a constant-size decryption key, but the 

classes need to conform to some predefined 

hierarchical relationship. Our work is flexible in the 

sense that this constraint is eliminated, that is, no 

special relation is required between the classes. 

 

We propose several concrete KAC schemes with 

different security levels and extensions in this paper. 

All constructions can be proven secure in the standard 
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model. To the best of our knowledge, our aggregation 

mechanism in KAC has not been investigated. 

III. KEY-AGGREGATE ENCRYPTION 

A key-aggregate encryption scheme consists of five 

polynomial-time algorithms as follows. 

The data owner establishes the public system 

parameter via Setup and generates a public/master-

secret key pair via KeyGen. Messages can be 

encrypted via Encrypt by anyone who also decides 

what ciphertext class is associated with the plaintext 

message to be encrypted. The data owner can use the 

master-secret to generate an aggregate decryption key 

for a set of ciphertext classes via Extract. The 

generated keys can be passed to delegates securely 

(via secure e-mails or secure devices) finally; any user 

with an aggregate key can decrypt any ciphertext 

provided that the ciphertext’s class is contained in the 

aggregate key via Decrypt. 

 

 Setup(1λ, n): executed by the data owner to setup 

an account on an untrusted server. On input a 

security level parameter 1 λ and the number of 

ciphertext classes n (i.e., class index should be an 

integer bounded by 1 and n), it outputs the public 

system parameter param, which is omitted from 

the input of the other algorithms for brevity. 

 

 KeyGen: executed by the data owner to 

randomlygenerate a public/master-secret key pair 

(pk; msk). 

 

 Encrypt(pk,i,m): executed by anyone who wants 

to encrypt data. On input a public-key pk, an 

index i denoting the ciphertext class, and a 

message m, it outputs a ciphertext C. 

 

 Extract(msk,S): executed by the data owner for 

delegating the decrypting power for a certain set 

of ciphertext classes to a delegatee. On input the 

master-secret key msk and a set S of indices 

corresponding to different classes, it outputs the 

aggregate key for set S denoted by KS. 

 

 Decrypt(KS, S, I, C): executed by a delegatee 

who received an aggregate key KS generated by 

Extract. On input KS, the set S, an index i 

denoting the ciphertext class the ciphertext C 

belongs to, and C, it outputs the decrypted result 

m if i € S. 

 

Sharing Encrypted Data 

 

A canonical application of KAC is data sharing. The 

key aggregation property is especially useful when we 

expect the delegation to be efficient and flexible. The 

schemes enable a content provider to share her data in 

a confidential and selective way, with a fixed and 

small ciphertext expansion, by distributing to each 

authorized user a single and small aggregate key. 

 

 

Figure 2 Using KAC for data sharing in cloud storage. 

 

Sharing Encrypted Data 

A canonical application of KAC is data sharing. The 

key aggregation property is especially useful when we 
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expect the delegation to be efficient and flexible. The 

schemes enable a content provider to share her data in 

a confidential and selective way, with a fixed and 

small ciphertext expansion, by distributing to each 

authorized user a single and small aggregate key. 

 

Here, we describe the main idea of data sharing in 

cloud storage using KAC, illustrated in Fig. 2. 

Suppose Alice wants to share her data m1,m2, . . .,mv 

on the server. She first performs Setup(1λ, n) to get 

param and execute KeyGen to get the public/master-

secret key pair (pk, msk). The system parameter 

param and public-key pk can be made public and 

master-secret key msk should be kept secret by Alice. 

Anyone (including Alice herself) can then encrypt 

each mi by Ci= Encrypt(pk, I,mi). The encrypted data 

are uploaded to the server. 

 

With param and pk, people who cooperate with Alice 

can update Alice’s data on the server. Once Alice is 

willing to share a set S of her data with a friend Bob, 

she can compute the aggregate key KS for Bob by 

performing Extract(msk, S). Since KS is just a 

constant-size key, it is easy to be sent to Bob via a 

secure e-mail. 

 

After obtaining the aggregate key, Bob can download 

the data he is authorized to access. That is, for each i € 

S, Bob downloads Ci (and some needed values in 

param) from the server. With the aggregate key KS, 

Bob can decrypt each Ci by Decrypt(KS, S, ,Ci) for 

each i € S. 

 

IV. RELATED WORK 

 

We start by discussing the most relevant study in the 

literature of cryptography/security. Cryptographic key 

assignment schemes ([8]) aim to minimize the expense 

in storing and managing secret keys for general 

cryptographic use. Utilizing a tree structure, a key for 

a given branch can be used to derive the keys of its 

descendant nodes (but not the other way round). Just 

granting the parent key implicitly grants all the keys of 

its descendant nodes. Sandhu proposed a method to 

generate a tree hierarchy of symmetric-keys by using 

repeated evaluations of pseudorandom function/ block 

cipher on a fixed secret. The concept can be 

generalized from a tree to a graph. More advanced 

cryptographic key assignment schemes support access 

policy that can be modeled by an acyclic graph or a 

cyclic graph [7]. Most of these schemes produce keys 

for symmetric-key cryptosystems, even though the key 

derivations may require modular arithmetic as used in 

public-key cryptosystems, which are generally more 

expensive than “symmetric-key operations” such as 

pseudorandom function. 

 

We take the tree structure as an example. Alice can 

first classify the ciphertext classes according to their 

subjects. Each node in the tree represents a secret key, 

while the leaf nodes represents the keys for individual 

ciphertext classes. Filled circles represent the keys for 

the classes to be delegated and circles circumvented 

by dotted lines represent the keys to be granted. Note 

that every key of the non-leaf node can derive the keys 

of its descendant nodes. 

 

However, it is still difficult for general cases. As 

shown in,  if Alice shares her demo music at work 

(“work”! “casual”! “demo” and “work”! 

“confidential” ! “demo”) with a colleague who also 

has the rights to see some of her personal data, what 

she can do is to give more keys, which leads to an 

increase in the total key size. One can see that this 

approach is not flexible when the classifications are 

more complex and she wants to share different sets of 

files to different people. For this delegatee in our 



IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07 
ISSN-2320-7884 (Online) 
ISSN-2321-0257 (Print) 
 

41 www.ijdcst.com 

 

example, the number of granted secret keys becomes 

the same as the number of classes. In general, 

hierarchical approaches can solve the problem 

partially if one intends to share all files under a certain 

branch in the hierarchy. On average, the number of 

keys increases with the number of branches. It is 

unlikely to come up with a hierarchy that can save the 

number of total keys to be granted for all individuals 

(which can access a different set of leaf-nodes) 

simultaneously. 

V. CONCLUSION 

How to protect users’ data privacy is a central 

question of cloud storage. With more mathematical 

tools, cryptographic schemes are getting more 

versatile and often involve multiple keys for a single 

application. In this paper, we consider how to 

“compress” secret keys in public-key cryptosystems 

which support delegation of secret keys for different 

ciphertext classes in cloud storage. No matter which 

one among the power set of classes, the delegatee can 

always get an aggregate key of constant size. Our 

approach is more flexible than hierarchical key 

assignment which can only save spaces if all key-

holders share a similar set of privileges. 

Although the parameter can be downloaded with 

ciphertexts, it would be better if its size is independent 

of the maximum number of ciphertext classes. On the 

other hand, when one carries the delegated keys 

around in a mobile device without using special 

trusted hardware, the key is prompt to leakage, 

designing a leakage-resilient cryptosystem [9], [10] 

yet allows efficient and flexible key delegation is also 

an interesting direction. 
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