
IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

36 www.ijdcst.com

A Novel Approach of Scalable Data Sharing in Cloud

Using Key-Aggregate Cryptosystem

P Pavani Sri Katyayini1, M Anand Kumar2

1 M.Tech (CSE), Sri Vasavi Institute of Engineering and Technology, A.P., India.

2Assistant Professor, Dept. of Computer Science & Engineering, Sri Vasavi Institute of Engineering and Technology, A.P.,

India.

Abstract — Data sharing is an essential functionality

in cloud storage. In this paper, we show how to

efficiently, securely and flexibly share data with

others in cloud storage. We describe new public-key

cryptosystems that produce constant-size ciphertexts

such that efficient delegation of decryption rights for

any set of ciphertexts is possible. The novelty is that

one can aggregate any set of secret keys and make

them as compact as a single key, but encompassing

the power of all the keys being aggregated. In other

words, the secret key holder can release a constant-

size aggregate key for flexible choices of ciphertext

set in cloud storage, but the other encrypted files

outside the set remain confidential. This compact

aggregate key can be conveniently sent to others or be

stored in a smart card with very limited secure storage.

We provide formal security analysis of our schemes in

the standard model. We also describe other application

of our schemes. In particular, our schemes give the

first public-key patient-controlled encryption for

flexible hierarchy, which was yet to be known.

Keywords — Cloud storage, data sharing, key-

aggregate encryption, patient-controlled encryption

I. INTRODUCTION

Storing data in a cloud is become a common

phenomenon recently. In enterprise settings, we see

the rise in demand for data outsourcing, which assists

in the strategic management of corporate data. It is

also used as a core technology behind many online

services for personal applications. Nowadays, it is

easy to apply for free accounts for email, photo album,

and file sharing and/or remote access, with storage

size more than 25 GB (or a few dollars for more than

1 TB). Together with the current wireless technology,

users can access almost all of their files and emails by

a mobile phone in any corner of the world.

Considering data privacy, a traditional way to ensure it

is to rely on the server to enforce the access control

after authentication (e.g., [1]), which means any

unexpected privilege escalation will expose all data. In

a shared-tenancy cloud computing environment,

things become even worse. Data from different clients

can be hosted on separate virtual machines (VMs) but

reside on a single physical machine. Data in a target

VM could be stolen by instantiating another VM co-

resident with the target one [2]. Regarding availability

of files, there are a series of cryptographic schemes

which go as far as allowing a third-party auditor to

check the availability of files on behalf of the data

owner without leaking anything about the data [3], or

without compromising the data owners anonymity [4].

Likewise, cloud users probably will not hold the

strong belief that the cloud server is doing a good job

in terms of confidentiality. A cryptographic solution,

for example, [5], with proven security relied on

number-theoretic assumptions is more desirable,

whenever the user is not perfectly happy with trusting

the security of the VM or the honesty of the technical

staff. These users are motivated to encrypt their data

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

37 www.ijdcst.com

with their own keys before uploading them to the

server.

Data sharing is an important functionality in cloud

storage. For example, bloggers can let their friends

view a subset of their private pictures; an enterprise

may grant her employees access to a portion of

sensitive data. The challenging problem is how to

effectively share encrypted data. Of course users can

download the encrypted data from the storage, decrypt

them, then send them to others for sharing, but it loses

the value of cloud storage. Users should be able to

delegate the access rights of the sharing data to others

so that they can access these data from the server

directly. However, finding an efficient and secure way

to share partial data in cloud storage is not trivial.

Below we will take Dropbox1 as an example for

illustration.

Assume that Alice puts all her private photos on

Dropbox, and she does not want to expose her photos

to everyone. Due to various data leakage possibility

Alice cannot feel relieved by just relying on the

privacy protection mechanisms provided by Dropbox,

so she encrypts all the photos using her own keys

before uploading. One day, Alice’s friend, Bob, asks

her to share the photos taken over all these years

which Bob appeared in. Alice can then use the share

function of Dropbox, but the problem now is how to

delegate the decryption rights for these photos to Bob.

A possible option Alice can choose is to securely send

Bob the secret keys involved. Naturally, there are two

extreme ways for her under the traditional encryption

paradigm:

 Alice encrypts all files with a single encryption

key and gives Bob the corresponding secret key

directly.

 Alice encrypts files with distinct keys and sends

Bob the corresponding secret keys.

Obviously, the first method is inadequate since all un-

chosen data may be also leaked to Bob. For the second

method, there are practical concerns on efficiency.

The number of such keys is as many as the number of

the shared photos, say, a thousand. Transferring these

secret keys inherently requires a secure channel, and

storing these keys requires rather expensive secure

storage. The costs and complexities involved generally

increase with the number of the decryption keys to be

shared. In short, it is very heavy and costly to do that.

Encryption keys also come with two flavors—

symmetric key or asymmetric (public) key. Using

symmetric encryption, when Alice wants the data to

be originated from a third party, she has to give the

encryptor her secret key; obviously, this is not always

desirable. By contrast, the encryption key and

decryption key are different in publickey encryption.

The use of public-key encryption gives more

flexibility for our applications. For example, in

enterprise settings, every employee can upload

encrypted data on the cloud storage server without the

knowledge of the company’s master-secret key.

Therefore, the best solution for the above problem is

that Alice encrypts files with distinct public-keys, but

only sends Bob a single (constant-size) decryption

key. Since the decryption key should be sent via a

secure channel and kept secret, small key size is

always desirable. For example, we cannot expect large

storage for decryption keys in the resource-constraint

devices like smart phones, smart cards, or wireless

sensor nodes. Especially, these secret keys are usually

stored in the tamper-proof memory, which is relatively

expensive. The present research efforts mainly focus

on minimizing the communication requirements (such

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

38 www.ijdcst.com

as bandwidth, rounds of communication) like

aggregate signature [6]. However, not much has been

done about the key itself.

II. OUR CONTRIBUTION

In modern cryptography, a fundamental problem we

often study is about leveraging the secrecy of a small

piece of knowledge into the ability to perform

cryptographic functions (e.g., encryption,

authentication) multiple times. In this paper, we study

how to make a decryption key more powerful in the

sense that it allows decryption of multiple ciphertexts,

without increasing its size. Specifically, our problem

statement is

“To design an efficient public-key encryption scheme

which supports flexible delegation in the sense that

any subset of the ciphertexts (produced by the

encryption scheme) is decryptable by a constant-size

decryption key (generated by the owner of the master-

secret key).”

We solve this problem by introducing a special type of

public-key encryption which we call key-aggregate

cryptosystem (KAC). In KAC, users encrypt a

message not only under a public-key, but also under

an identifier of ciphertext called class. That means the

ciphertexts are further categorized into different

classes. The key owner holds a master-secret called

master-secret key, which can be used to extract secret

keys for different classes. More importantly, the

extracted key have can be an aggregate key which is

as compact as a secret key for a single class, but

aggregates the power of many such keys, i.e., the

decryption power for any subset of ciphertext classes.

Figure 1 Alice share files with identifiers 2, 3, 6 and 8

with Bob by sending him a single aggregate key.

With our solution, Alice can simply send Bob a single

aggregate key via a secure e-mail. Bob can download

the encrypted photos from Alice’s Dropbox space and

then use this aggregate key to decrypt these encrypted

photos. The scenario is depicted in Fig. 1.

The sizes of ciphertext, public-key, master-secret key,

and aggregate key in our KAC schemes are all of

constant size. The public system parameter has size

linear in the number of ciphertext classes, but only a

small part of it is needed each time and it can be

fetched on demand from large (but non-confidential)

cloud storage.

Previous results may achieve a similar property

featuring a constant-size decryption key, but the

classes need to conform to some predefined

hierarchical relationship. Our work is flexible in the

sense that this constraint is eliminated, that is, no

special relation is required between the classes.

We propose several concrete KAC schemes with

different security levels and extensions in this paper.

All constructions can be proven secure in the standard

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

39 www.ijdcst.com

model. To the best of our knowledge, our aggregation

mechanism in KAC has not been investigated.

III. KEY-AGGREGATE ENCRYPTION

A key-aggregate encryption scheme consists of five

polynomial-time algorithms as follows.

The data owner establishes the public system

parameter via Setup and generates a public/master-

secret key pair via KeyGen. Messages can be

encrypted via Encrypt by anyone who also decides

what ciphertext class is associated with the plaintext

message to be encrypted. The data owner can use the

master-secret to generate an aggregate decryption key

for a set of ciphertext classes via Extract. The

generated keys can be passed to delegates securely

(via secure e-mails or secure devices) finally; any user

with an aggregate key can decrypt any ciphertext

provided that the ciphertext’s class is contained in the

aggregate key via Decrypt.

 Setup(1λ, n): executed by the data owner to setup

an account on an untrusted server. On input a

security level parameter 1 λ and the number of

ciphertext classes n (i.e., class index should be an

integer bounded by 1 and n), it outputs the public

system parameter param, which is omitted from

the input of the other algorithms for brevity.

 KeyGen: executed by the data owner to

randomlygenerate a public/master-secret key pair

(pk; msk).

 Encrypt(pk,i,m): executed by anyone who wants

to encrypt data. On input a public-key pk, an

index i denoting the ciphertext class, and a

message m, it outputs a ciphertext C.

 Extract(msk,S): executed by the data owner for

delegating the decrypting power for a certain set

of ciphertext classes to a delegatee. On input the

master-secret key msk and a set S of indices

corresponding to different classes, it outputs the

aggregate key for set S denoted by KS.

 Decrypt(KS, S, I, C): executed by a delegatee

who received an aggregate key KS generated by

Extract. On input KS, the set S, an index i

denoting the ciphertext class the ciphertext C

belongs to, and C, it outputs the decrypted result

m if i € S.

Sharing Encrypted Data

A canonical application of KAC is data sharing. The

key aggregation property is especially useful when we

expect the delegation to be efficient and flexible. The

schemes enable a content provider to share her data in

a confidential and selective way, with a fixed and

small ciphertext expansion, by distributing to each

authorized user a single and small aggregate key.

Figure 2 Using KAC for data sharing in cloud storage.

Sharing Encrypted Data

A canonical application of KAC is data sharing. The

key aggregation property is especially useful when we

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

40 www.ijdcst.com

expect the delegation to be efficient and flexible. The

schemes enable a content provider to share her data in

a confidential and selective way, with a fixed and

small ciphertext expansion, by distributing to each

authorized user a single and small aggregate key.

Here, we describe the main idea of data sharing in

cloud storage using KAC, illustrated in Fig. 2.

Suppose Alice wants to share her data m1,m2, . . .,mv

on the server. She first performs Setup(1λ, n) to get

param and execute KeyGen to get the public/master-

secret key pair (pk, msk). The system parameter

param and public-key pk can be made public and

master-secret key msk should be kept secret by Alice.

Anyone (including Alice herself) can then encrypt

each mi by Ci= Encrypt(pk, I,mi). The encrypted data

are uploaded to the server.

With param and pk, people who cooperate with Alice

can update Alice’s data on the server. Once Alice is

willing to share a set S of her data with a friend Bob,

she can compute the aggregate key KS for Bob by

performing Extract(msk, S). Since KS is just a

constant-size key, it is easy to be sent to Bob via a

secure e-mail.

After obtaining the aggregate key, Bob can download

the data he is authorized to access. That is, for each i €

S, Bob downloads Ci (and some needed values in

param) from the server. With the aggregate key KS,

Bob can decrypt each Ci by Decrypt(KS, S, ,Ci) for

each i € S.

IV. RELATED WORK

We start by discussing the most relevant study in the

literature of cryptography/security. Cryptographic key

assignment schemes ([8]) aim to minimize the expense

in storing and managing secret keys for general

cryptographic use. Utilizing a tree structure, a key for

a given branch can be used to derive the keys of its

descendant nodes (but not the other way round). Just

granting the parent key implicitly grants all the keys of

its descendant nodes. Sandhu proposed a method to

generate a tree hierarchy of symmetric-keys by using

repeated evaluations of pseudorandom function/ block

cipher on a fixed secret. The concept can be

generalized from a tree to a graph. More advanced

cryptographic key assignment schemes support access

policy that can be modeled by an acyclic graph or a

cyclic graph [7]. Most of these schemes produce keys

for symmetric-key cryptosystems, even though the key

derivations may require modular arithmetic as used in

public-key cryptosystems, which are generally more

expensive than “symmetric-key operations” such as

pseudorandom function.

We take the tree structure as an example. Alice can

first classify the ciphertext classes according to their

subjects. Each node in the tree represents a secret key,

while the leaf nodes represents the keys for individual

ciphertext classes. Filled circles represent the keys for

the classes to be delegated and circles circumvented

by dotted lines represent the keys to be granted. Note

that every key of the non-leaf node can derive the keys

of its descendant nodes.

However, it is still difficult for general cases. As

shown in, if Alice shares her demo music at work

(“work”! “casual”! “demo” and “work”!

“confidential” ! “demo”) with a colleague who also

has the rights to see some of her personal data, what

she can do is to give more keys, which leads to an

increase in the total key size. One can see that this

approach is not flexible when the classifications are

more complex and she wants to share different sets of

files to different people. For this delegatee in our

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

41 www.ijdcst.com

example, the number of granted secret keys becomes

the same as the number of classes. In general,

hierarchical approaches can solve the problem

partially if one intends to share all files under a certain

branch in the hierarchy. On average, the number of

keys increases with the number of branches. It is

unlikely to come up with a hierarchy that can save the

number of total keys to be granted for all individuals

(which can access a different set of leaf-nodes)

simultaneously.

V. CONCLUSION

How to protect users’ data privacy is a central

question of cloud storage. With more mathematical

tools, cryptographic schemes are getting more

versatile and often involve multiple keys for a single

application. In this paper, we consider how to

“compress” secret keys in public-key cryptosystems

which support delegation of secret keys for different

ciphertext classes in cloud storage. No matter which

one among the power set of classes, the delegatee can

always get an aggregate key of constant size. Our

approach is more flexible than hierarchical key

assignment which can only save spaces if all key-

holders share a similar set of privileges.

Although the parameter can be downloaded with

ciphertexts, it would be better if its size is independent

of the maximum number of ciphertext classes. On the

other hand, when one carries the delegated keys

around in a mobile device without using special

trusted hardware, the key is prompt to leakage,

designing a leakage-resilient cryptosystem [9], [10]

yet allows efficient and flexible key delegation is also

an interesting direction.

REFERENCES

[1] S.S.M. Chow, Y.J. He, L.C.K. Hui, and S.-M. Yiu,

“SPICE – Simple Privacy-Preserving Identity-

Management for Cloud Environment,” Proc. 10th Int’l

Conf. Applied Cryptography and Network Security

(ACNS), vol. 7341, pp. 526-543, 2012.

[2] L. Hardesty, Secure Computers Aren’t so Secure.

MITpress,http://www.physorg.com/news176107396.h

tml, 2009.

[3] C. Wang, S.S.M. Chow, Q. Wang, K. Ren, and W.

Lou, “Privacy-Preserving Public Auditing for Secure

Cloud Storage,” IEEE Trans. Computers, vol. 62, no.

2, pp. 362-375, Feb. 2013.

[4] B. Wang, S.S.M. Chow, M. Li, and H. Li, “Storing

Shared Data on the Cloud via Security-Mediator,”

Proc. IEEE 33rd Int’l Conf. Distributed Computing

Systems (ICDCS), 2013.

[5] S.S.M. Chow, C.-K. Chu, X. Huang, J. Zhou, and

R.H. Deng, “Dynamic Secure Cloud Storage with

Provenance,” Cryptography and Security, pp. 442-

464, Springer, 2012.

[6] D. Boneh, C. Gentry, B. Lynn, and H. Shacham,

“Aggregate and Verifiably Encrypted Signatures from

Bilinear Maps,” Proc. 22nd Int’l Conf. Theory and

Applications of Cryptographic Techniques

(EUROCRYPT ’03), pp. 416-432, 2003.

[7] M.J. Atallah, M. Blanton, N. Fazio, and K.B.

Frikken, “Dynamic and Efficient Key Management for

Access Hierarchies,” ACM Trans. Information and

System Security, vol. 12, no. 3, pp. 18:1-18:43, 2009.

[8] J. Benaloh, M. Chase, E. Horvitz, and K. Lauter,

“Patient Controlled Encryption: Ensuring Privacy of

Electronic Medical Records,” Proc. ACM Workshop

Cloud Computing Security (CCSW ’09), pp. 103-114,

2009.

[9] F. Guo, Y. Mu, Z. Chen, and L. Xu, “Multi-

Identity Single-Key Decryption without Random

Oracles,” Proc. Information Security and Cryptology

(Inscrypt ’07), vol. 4990, pp. 384-398, 2007.

[10] V. Goyal, O. Pandey, A. Sahai, and B. Waters,

“Attribute-Based Encryption for Fine-Grained Access

Control of Encrypted Data,” Proc. 13th ACM Conf.

IJDCST @Aug-Sept-2015, Issue- V-3, I-6, SW-07
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

42 www.ijdcst.com

Computer and Comm. Security (CCS ’06), pp. 89-98,

2006.

